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1. Introduction
Stochastic calculus is arguably one of the most important contributions to 20th century mathematics
and is now one of the cornerstones of probability theory. One of the problems with the standard
treatment in textbooks of this subject is that the presentation is still very close to the historical
development of the subject and in particular for the case of general processes with jumps, there are
now more direct constructions available.

Here, we will use a much more direct approach following [1], [2], [3] and in particular [4]. The key
will be the right notion of integrability which captures the stochastic cancellation effect.

Let us now present a brief outline: First, we are going to describe the right notion of integrability
and then define the stochastic integral. We then prove some standard results on stochastic integrals
and in particular establish Itô’s formula, definitely the most important result of the subject. The last
step in these notes is establishing easy-to-check conditions that imply integrability and that can be
used in practice easily. The Bichteler-Dellacherie theorem, which is a kind of if and only if statement
in this context, will not be discussed, see however [5], [6] for more information on this. The reader is
expected to be familiar with basic martingale results in the discrete and the continuum setting at the
level of for example [7].

2. Construction of the stochastic integral
The key of the approach presented here, will be the right choice of definitions. We begin with some
well-known notions. Throughout this text, (Ω, ℱ, (ℱ𝑡)𝑡≥0, ℙ) will be a filtered probability space
satisfying the usual conditions i.e. ℱ𝑡 = ℱ𝑡+ where ℱ𝑡+ = ∩𝑠>𝑡 ℱ𝑠 and 𝒩 ⊆ ℱ0 where we let 𝒩 =
{𝐴 ∈ ℱ∞ : ℙ(𝐴) ∈ {0, 1}} and ℱ∞ = 𝜎(∪𝑡≥0 ℱ𝑡).

In these notes, a càdlàg process will be a random process 𝑋 : [0, ∞) → ℝ ∪ {𝜕} (we use 𝜕 to denote
a cemetery state) such that on (0, 𝜁𝑋), 𝑋 is right-continuous with left limits and takes values in ℝ,
and on [𝜁𝑋, ∞), 𝑋 is constant with value 𝜕 where 𝜁𝑋 = inf{𝑡 ≥ 0 : 𝑋𝑡 = 𝜕}. Operations on càdlàg
processes (like stopping, addition or scalar multiplication) are defined in the usual way where it is
understood that evaluating any expression involving 𝜕 yields 𝜕 as the result. We also set

𝑋∗
𝑡 = {

sup𝑠∈[0,𝑡]|𝑋𝑠| : 𝑡 < 𝜁𝑋,
∞ : 𝑡 ≥ 𝜁𝑋.

We say 𝑋𝑛 → 𝑋 u.c.p. (uniformly on compacts in probability) as 𝑛 → ∞ for 𝑋 and (𝑋𝑛) càdlàg
processes if (𝑋 − 𝑋𝑛)∗

𝑡1(𝑡 < 𝜁𝑋) → 0 in probability as 𝑛 → ∞ for all 𝑡 ≥ 0.
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Definition 2.1 (Predictable and simple processes). We call

𝒫 = 𝜎({0} × 𝐴 : 𝐴 ∈ ℱ0) ∨ 𝜎((𝑠, 𝑡] × 𝐴 : 0 ≤ 𝑠 < 𝑡 and 𝐴 ∈ ℱ𝑠)

the predictable 𝜎-algebra on [0, ∞) × Ω. A process 𝜉 : [0, ∞) × Ω → ℝ is said to be predictable if it
is measurable w.r.t. 𝒫 and in this case, we write (by standard abuse of notation) 𝜉 ∈ 𝒫. Moreover,
we let 𝒫𝑏 be the set of predictable bounded processes. A process 𝜎 is simple if it is of the form

𝜎𝑡 = 𝛼01{0}(𝑡) + ∑
𝑛

𝑖=1
𝛼𝑖1(𝜏𝑖,𝜏𝑖](𝑡) for 𝑡 ≥ 0, (1)

where 0 ≤ 𝜏𝑖 ≤ 𝜏𝑖 are stopping times and 𝛼0 ∈ ℱ0 and 𝛼𝑖 ∈ ℱ𝜏𝑖
 for 𝑖 ≥ 1 are random variables.

We write Σ for the set of simple processes. Note that Σ is a vector space and moreover 𝜎 ∧ 𝜎′, 𝜎 ∨
𝜎′ ∈ Σ whenever 𝜎, 𝜎′ ∈ Σ. Finally, we define the set

Σ̃ = {𝐴 ⊆ [0, ∞) × Ω : 1𝐴 ∈ Σ}.

Remark 2.2. It is easy to show that 𝒫 is generated by all left-continuous adapted processes. From
the definition, it is easy to see that if 𝜉 is simple, it is left-continuous and adapted, hence predictable.
Also, by only considering simple processes with deterministic stopping times, one sees that Σ̃ is
a 𝜋-system generating 𝒫.

Definition 2.3 (Stochastic integrals with simple integrands). Let 𝑋 be an adapted càdlàg
process and 𝜎 ∈ Σ be of the form (1). The stochastic integral 𝜎 ⋅ 𝑋 is defined to be the adapted
càdlàg process

(𝜎 ⋅ 𝑋)𝑡 =
⎩{
⎨
{⎧∑𝑛

𝑖=1 𝛼𝑖(𝑋𝜏𝑖∧𝑡 − 𝑋𝜏𝑖∧𝑡) : 𝑡 < 𝜁𝑋,
𝜕 : 𝑡 ≥ 𝜁𝑋.

We also write 𝜎 ⋅ 𝑋 = ∫ 𝜎 𝑑𝑋 and (𝜎 ⋅ 𝑋)𝑡 = ∫𝑡
0

𝜎𝑠 𝑑𝑋𝑠. It is immediate that 𝜎 ⋅ 𝑋 is well-defined
and linear in 𝜎 and 𝑋.

Remark 2.4. Let us remark that, just like for conditional expectations, in the case of stochastic
integration, for general 𝜉 ∈ 𝒫, 𝜉 ⋅ 𝑋 will be a version of the stochastic integral and there will be
no preferred (adapted càdlàg) version.

We leave the following important (but easy) lemma as an exercise.

Lemma 2.5. Let 𝜎 ∈ Σ, 𝑋 be càdlàg and adapted and 𝜏  a stopping time, then we have (1[0,𝜏]𝜎) ⋅
𝑋 = 𝜎 ⋅ 𝑋𝜏 = (𝜎 ⋅ 𝑋)𝜏  where (1[0,𝜏]𝜎)

𝑡
= 1[0,𝜏](𝑡)𝜎𝑡 so that 1[0,𝜏]𝜎 ∈ Σ.

Our goal will be to construct stochastic integrals. To do so, we will first extend the stochastic integral
from Σ to 𝒫𝑏 and then to the most general case of what will be called integrable processes. To avoid
having to repeat the same properties over and over again, we make the following definition.
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Definition 2.6 (Stochastic calculus). Fix an adapted càdlàg process 𝑋. We say that a family
of predictable processes 𝒢 admits a stochastic calculus for 𝑋 if to any 𝜉 ∈ 𝒢 we can associate a
càdlàg adapted process 𝜉 ⋅ 𝑋 such that the following properties hold:

(i) If 𝜎 ∈ Σ is bounded then 𝜎 ∈ 𝒢 and 𝜎 ⋅ 𝑋 is given by Definition 2.3.
(ii) Stochastic dominated convergence: Let 𝜂 ∈ 𝒢, 𝜉 ∈ 𝒫 and (𝜉𝑛) ⊆ 𝒫 be such that 𝜉𝑛 → 𝜉

pointwise and |𝜉𝑛| ≤ |𝜂| for all 𝑛 ≥ 1. Then (𝜉𝑛) ⊆ 𝒢, 𝜉 ∈ 𝒢 and 𝜉𝑛 ⋅ 𝑋 → 𝜉 ⋅ 𝑋 u.c.p.
(iii) Linearity: If 𝜉, 𝜂 ∈ 𝒢 and 𝜆, 𝜇 ∈ ℝ, then 𝜆𝜉 + 𝜇𝜂 ∈ ℐ𝑋 and (𝜆𝜉 + 𝜇𝜂) ⋅ 𝑋 = 𝜆(𝜉 ⋅ 𝑋) +

𝜇(𝜂 ⋅ 𝑋) a.s.
(iv) Uniqueness: If 𝜉 ∗ 𝑋 for 𝜉 ∈ 𝒢 are càdlàg adapted processes satisfying the same properties

(i), (ii) and (iii) as the processes 𝜉 ⋅ 𝑋 above, then 𝜉 ∗ 𝑋 = 𝜉 ⋅ 𝑋 a.s. for all 𝜉 ∈ 𝒢.

The properties are very powerful since they allow standard measure theoretic arguments to be applied
in order to extend results about stochastic integrals from simple processes to the general case: Indeed,
one first verifies the desired statement on simple processes 𝜉 ∈ Σ, and in particular for 𝜉 = 1𝐴 when
𝐴 ∈ Σ̃, then using Dynkin’s lemma, one extends the result to 𝜉 = 1𝐴 for 𝐴 ∈ 𝒫, and by taking
linear combinations and a limit via stochastic dominated convergence, one finally deduces the desired
statement for all 𝜉 ∈ 𝒢.

The last definition we need is that of integrability.

Definition 2.7 (Good integrators and integrability). For 𝑋 an adapted càdlàg process. We say
that 𝑋 is a good integrator if

sup
𝜎∈Σ: |𝜎| ≤1

ℙ(|(𝜎 ⋅ 𝑋)𝑡 | > 𝐶, 𝑡 < 𝜁𝑋) → ∞ as 𝐶 → ∞ for all 𝑡 ≥ 0.

If 𝒫𝑏 admits a stochastic calculus for 𝑋, we say that 𝜉 ∈ 𝒫 is 𝑋-integrable if

sup
𝜉′∈𝒫𝑏: |𝜉′| ≤ |𝜉|

ℙ(|(𝜉′ ⋅ 𝑋)𝑡 | > 𝐶, 𝑡 < 𝜁𝑋) → ∞ as 𝐶 → ∞ for all 𝑡 ≥ 0

and write ℐ𝑋 for the set of 𝑋-integrable processes. Both of the previous two definitions capture
a form of tightness for families of stochastic integrals. Lastly for 𝜉 ∈ 𝒫, we make the following
definitions which will be key in our proof strategy:

‖𝜉‖0
𝑋,𝑡 = sup

𝜎′∈Σ: |𝜎′| ≤ |𝜉|
𝔼(|(𝜎′ ⋅ 𝑋)𝑡| ∧ 1; 𝑡 < 𝜁𝑋) and

‖𝜉‖𝑋,𝑡 = inf{∑
𝑛

 ‖𝜎𝑛‖0
𝑋,𝑡 : |𝜉| ≤ ∑

𝑛
|𝜎𝑛| with (𝜎𝑛) ⊆ Σ} ∈ [0, ∞].

Note that ‖𝜉‖𝑋,𝑡 is monotone and countably subadditive in |𝜉| and we will make use of these
properties throughout without explicit mention.

The purpose of this whole section is to prove the following theorem. One should understand this as a
result which improves tightness (as it appears in the previous definition) to convergence of stochastic
integrals. Tightness is frequently easy to check (using moment bounds for example) which makes this
theory very useful in practice.
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Theorem 2.8 (Construction of stochastic integrals). If 𝑋 be a good integrator, 𝒫𝑏 admits a
stochastic calculus for 𝑋. Moreover in this case, the set ℐ𝑋 of 𝑋-integrable processes is defined
and ℐ𝑋 admits a stochastic calculus for 𝑋.

Note that we first have to construct the integral on a smaller subset of processes just in order to define
the general notion of integrability. This is very analogous to first having to define (usual) integration
with respect to some measure for non-negative functions in order to define when a general real-valued
function is integrable.

The idea of the proof of the first part will be to show that for each 𝜉 ∈ 𝒫𝑏, there exists a sequence
(𝜎𝑛) ⊆ Σ such that ‖𝜉 − 𝜎𝑛‖𝑋,𝑡 → 0 as 𝑛 → ∞. Moreover, we will establish the bound

𝔼((𝜎𝑛 ⋅ 𝑋 − 𝜎𝑚 ⋅ 𝑋)∗
𝑡 ∧ 1; 𝑡 < 𝜁𝑋) ≤ (‖𝜎𝑛 − 𝜎𝑚‖𝑋,𝑡 ∧ 1)(1 − log(‖𝜎𝑛 − 𝜎𝑚 ‖𝑋,𝑡 ∧ 1)).

A standard Cauchy sequence argument then allows us to construct the stochastic integral. The further
extension to all processes ℐ𝑋 follows a similar strategy.

2.1. Technical lemmas

The construction of the stochastic integral builds on a few technical lemmas. The following lemma is
essentially a stochastic version of the fact that an absolutely convergent series has terms going to 0.

Lemma 2.9. Let 𝑋 be a good integrator and (𝜎𝑛) ⊆ Σ are such that ∑𝑛|𝜎𝑛| ≤ 1, then we have
that for all 𝑡 ≥ 0, (𝜎𝑛 ⋅ 𝑋)𝑡1(𝑡 < 𝜁𝑋) → 0 in probability as 𝑛 → ∞.

Proof. We will in fact even show ∑𝑛 (𝜎𝑛 ⋅ 𝑋)2
𝑡 < ∞ almost surely on the event {𝑡 < 𝜁𝑋}. Let (𝜀𝑖) be a

sequence of i.i.d. random variables with distribution ℙ(𝜀𝑖 = ±1) = 1/2. First, note that by the central
limit theorem, for any sequence of real numbers (𝑥𝑖) satisfying ∑𝑖 𝑥2

𝑖 = ∞, we have

∑𝑛
𝑖=1 𝜀𝑖𝑥𝑖

(∑𝑛
𝑖=1 𝑥2

𝑖 )
1/2 →

𝑑
𝑁(0, 1) as 𝑛 → ∞.

It is easy to deduce that for all 𝐶 > 0, ℙ(| ∑𝑛
𝑖=1 𝜀𝑖𝑥𝑖| ≤ 𝐶) → 0 as 𝑛 → ∞. By conditioning on

((𝜎𝑖 ⋅ 𝑋)𝑡 : 𝑖 ≥ 1), applying the above to 𝑥𝑖 = (𝜎𝑖 ⋅ 𝑋)𝑡 on the event {∑𝑖 (𝜎𝑖 ⋅ 𝑋)2
𝑡 = ∞} and

dominated convergence, we get for any 𝐶 > 0,

ℙ(|∑
𝑛

𝑖=1
𝜀𝑖(𝜎𝑖 ⋅ 𝑋)𝑡| ≤ 𝐶, ∑

𝑖
(𝜎𝑖 ⋅ 𝑋)2

𝑡 = ∞, 𝑡 < 𝜁𝑋) → 0 as 𝑛 → ∞.

However, by the definition of good integrators in Definition 2.7, the set {∑𝑛
𝑖=1 𝜀𝑖(𝜎𝑖 ⋅ 𝑋)𝑡 : 𝑛 ≥ 1} =

{((∑𝑛
𝑖=1 𝜀𝑖𝜎𝑖) ⋅ 𝑋)

𝑡
: 𝑛 ≥ 1} of random variables is tight on the event {𝑡 < 𝜁𝑋} since

|∑
𝑛

𝑖=1
𝜀𝑖𝜎𝑖| ≤ ∑

𝑖
|𝜎𝑖| ≤ 1 for all 𝑛 ≥ 1.

One readily deduces ℙ(∑𝑖 (𝜎𝑖 ⋅ 𝑋)2
𝑡 = ∞, 𝑡 < 𝜁𝑋) = 0. □

While the above result will be relevant for the construction of the stochastic integral on 𝒫𝑏, the
following lemma plays the same role in the construction of the stochastic integral on ℐ𝑋 .
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Lemma 2.10. Let 𝑋 be an adapted càdlàg process and suppose that 𝒫𝑏 admits a stochastic calculus
for 𝑋. If 𝜉 ∈ ℐ𝑋 and (𝜌𝑛) ⊆ 𝒫𝑏 are such that ∑𝑛|𝜌𝑛| ≤ |𝜉|, then for all 𝑡 ≥ 0, it holds that
(𝜌𝑛 ⋅ 𝑋)𝑡1(𝑡 < 𝜁𝑋) → 0 in probability as 𝑛 → ∞.

Proof. The proof is almost identical to the one of Lemma 2.9 except that now the tightness of
{∑𝑛

𝑖=1 𝜀𝑖(𝜌𝑖 ⋅ 𝑋)𝑡 : 𝑛 ≥ 1} on the event {𝑡 < 𝜁𝑋} follows from the definition of 𝑋-integrability and
the fact that for all 𝑛 ≥ 1, | ∑𝑛

𝑖=1 𝜀𝑖𝜌𝑖 | ≤ ∑𝑖|𝜌𝑖| ≤ |𝜉|. □
The next lemma has the same conclusion as the previous one but under a rather different monotonicity
assumption. The main point is that if we had closed intervals in the definition of simple processes
(1) then the lemma would be almost trivial since monotone convergence of upper-semicontinuous
functions implies uniform convergence. The proof strategy is to modify the processes slightly in such
a way as to preserve monotonicity and to ensure upper semicontinuity.

Lemma 2.11. Let 𝑋 be a good integrator. If (𝜎𝑛) ⊆ Σ is such that |𝜎𝑛| ↓ 0 as 𝑛 → ∞, then for
all 𝑡 ≥ 0, we have (𝜎𝑛 ⋅ 𝑋)𝑡1(𝑡 < 𝜁𝑋) → 0 in probability as 𝑛 → ∞.

Proof. Fix 𝑡 ≥ 0, 𝛿 ∈ (0, 1) and 𝜀 > 0. We aim to show ℙ(|(𝜎𝑛 ⋅ 𝑋)𝑡| > 2𝛿, 𝑡 < 𝜁𝑋) ≤ 2𝜀 for
sufficiently large 𝑛. As we are considering the integral only up to time 𝑡 ≥ 0, it suffices to prove the
statement when the (𝜎𝑛) are of the form

𝜎𝑛 = 𝛼(𝑛)
0 1{0} + ∑

𝑁𝑛

𝑖=1
𝛼(𝑛)

𝑖 1(𝜏𝑖(𝑛),𝜏𝑖+1(𝑛)] with 𝛼(𝑛)
0 ∈ ℱ0,  𝛼

(𝑛)
𝑖 ∈ ℱ𝜏𝑖(𝑛)

where 0 = 𝜏1(𝑛) ≤ … ≤ 𝜏𝑁𝑛+1(𝑛) = 𝑡 are dissections of [0, 𝑡] consisting of stopping times which
become finer as 𝑛 increases. We will inductively construct stopping times 𝜈𝑖(𝑛) ∈ (𝜏𝑖(𝑛), 𝜏𝑖+1(𝑛)]
such that 𝔼(|(𝜎𝑛 ⋅ 𝑋)𝑡 − (𝜎′

𝑛 ⋅ 𝑋)𝑡| ∧ 1; 𝑡 < 𝜁𝑋) ≤ 𝛿𝜀 and |𝜎̃𝑛| ↓ 0 where

𝜎′
𝑛 = 𝛼(𝑛)

0 1{0} + ∑
𝑁𝑛

𝑖=1
𝛼(𝑛)

𝑖 1(𝜈𝑖(𝑛),𝜏𝑖+1(𝑛)], 𝜎̃𝑛 = 𝛼(𝑛)
0 1{0} + ∑

𝑁𝑛

𝑖=1
𝛼(𝑛)

𝑖 1[𝜈𝑖(𝑛),𝜏𝑖+1(𝑛)].

To see how the result follows, observe that, since 𝜎̃𝑛 is upper-semicontinuous for each 𝑛 ≥ 1 and
|𝜎̃𝑛| ↓ 0, we deduce (arguing by contradiction) that sup[0,𝑡]|𝜎̃𝑛| ↓ 0. Hence, as clearly |𝜎′

𝑛| ≤ |𝜎̃𝑛|, we
obtain sup[0,𝑡]|𝜎′

𝑛| → 0. Therefore we get

ℙ(|(𝜎𝑛 ⋅ 𝑋)𝑡| > 2𝛿, 𝑡 < 𝜁𝑋)

≤ ℙ(|(𝜎′
𝑛 ⋅ 𝑋)𝑡| > 𝛿, 𝑡 < 𝜁𝑋) +

1
𝛿
 𝔼(|(𝜎𝑛 ⋅ 𝑋)𝑡 − (𝜎′

𝑛 ⋅ 𝑋)𝑡| ∧ 1; 𝑡 < 𝜁𝑋)

≤ ℙ(sup
[0,𝑡]

|𝜎′
𝑛| > 𝛿′) + sup

𝜎′∈Σ: |𝜎′| ≤1
ℙ(|(𝜎′ ⋅ 𝑋)𝑡| >

𝛿
𝛿′ , 𝑡 < 𝜁𝑋) + 𝜀.

Since 𝑋 is a good integrator, the second term is ≤ 𝜀/2 for a sufficiently small 𝛿′ > 0 and for fixed
𝛿′ > 0, the first term is ≤ 𝜀/2 for 𝑛 sufficiently large, thus completing the argument.

To construct the stopping times 𝜈𝑖(𝑛) we first use the fact that 𝑋 is càdlàg to obtain stopping times
𝜈𝑖(𝑛) > 𝜏𝑖(𝑛) (e.g. 𝜈𝑖(𝑛) = 𝜏𝑖(𝑛) + 1/𝑁  for 𝑁  sufficiently large and deterministic) satifying
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𝔼( sup
𝑢,𝑣∈[𝜏𝑖(𝑛),𝜈̃𝑖(𝑛)]

𝐶|𝑋𝑢 − 𝑋𝑣| ∧ 1; 𝑡 < 𝜁𝑋) ≤ 𝛿𝜀 ⋅ 2−(1+𝑁1+⋯+𝑁𝑛)

where 𝐶 = sup
𝑛≥1

sup
[0,∞)

|𝜎𝑛| = sup
[0,∞)

|𝜎1| .

We then set 𝜈𝑖(1) = 𝜈𝑖(1) ∧ 𝜏𝑖+1(1). If 𝑛 > 1 and 𝑖 ≤ 𝑁𝑛, let 𝑗 ≤ 𝑁𝑛−1 be the unique value such that
(𝜏𝑖(𝑛), 𝜏𝑖+1(𝑛)] ⊆ (𝜏𝑗(𝑛 − 1), 𝜏𝑗+1(𝑛 − 1)] and define

𝜈𝑖(𝑛) = (𝜈𝑖(𝑛) ∨ 𝜈𝑗(𝑛 − 1)) ∧ 𝜏𝑖+1(𝑛).

Then, |𝜎̃𝑛| is non-increasing in 𝑛 and |𝜎̃𝑛| ≤ |𝜎𝑛| ↓ 0, hence |𝜎̃𝑛| ↓ 0. The definition of (𝜎𝑛 ⋅ 𝑋)𝑡 and
(𝜎′

𝑛 ⋅ 𝑋)𝑡 then yields, by inspection, 𝔼(|(𝜎𝑛 ⋅ 𝑋)𝑡 − (𝜎′
𝑛 ⋅ 𝑋)𝑡| ∧ 1; 𝑡 < 𝜁𝑋) ≤ 𝛿𝜀. □

The last lemma uses the previous one to control supremum distances using the objects introduced in
Definition 2.7.

Lemma 2.12. Let 𝑋 be a good integrator and 𝜎 ∈ Σ. Then ‖𝜎‖0
𝑋,𝑡 = ‖𝜎‖𝑋,𝑡 for all 𝑡 ≥ 0. Moreover,

whenever 𝑡 ≥ 0,

𝔼(|(𝜎 ⋅ 𝑋)𝑡| ∧ 1; 𝑡 < 𝜁𝑋) ≤ ‖𝜎‖𝑋,𝑡 and

𝔼((𝜎 ⋅ 𝑋)∗
𝑡 ∧ 1; 𝑡 < 𝜁𝑋) ≤ (‖𝜎‖𝑋,𝑡 ∧ 1)(1 − log(‖𝜎‖𝑋,𝑡 ∧ 1)).

Proof. By taking 𝜎1 = 𝜎 and 𝜎𝑛 = 0 for 𝑛 > 1 in Definition 2.7, it follows that ‖𝜎‖𝑋,𝑡 ≤ ‖𝜎‖0
𝑋,𝑡. It

therefore suffices to prove that ‖𝜎‖0
𝑋,𝑡 ≤ ∑𝑛‖𝜎𝑛‖0

𝑋,𝑡 whenever (𝜎𝑛) ⊆ Σ satisfy |𝜎| ≤ ∑𝑛|𝜎𝑛|. Let

𝜎(𝑛) = (𝜎 ∧ ∑
𝑘≤𝑛

|𝜎𝑘|) ∨ (− ∑
𝑘≤𝑛

|𝜎𝑘|).

Then

𝔼(|(𝜎 ⋅ 𝑋)𝑡| ∧ 1) ≤ 𝔼(|(𝜎(𝑛) ⋅ 𝑋)
𝑡
| ∧ 1) + 𝔼(|((𝜎 − 𝜎(𝑛)) ⋅ 𝑋)

𝑡
| ∧ 1), so

‖𝜎‖0
𝑋,𝑡 ≤ ‖ |𝜎1| +  ⋯ + |𝜎𝑛| ‖0

𝑋,𝑡 + 𝔼(|((𝜎 − 𝜎(𝑛)) ⋅ 𝑋)
𝑡
| ∧ 1).

(2)

By applying Lemma 2.11, we see that the second term tends to 0 as 𝑛 → ∞ since |𝜎 − 𝜎(𝑛)| ↓
0. Moreover, we can decompose each 𝜎′ ∈ Σ with |𝜎′| ≤ |𝜎1| +  ⋯ +|𝜎𝑛| as 𝜎′ = 𝜎′

1 +  ⋯ +𝜎′
𝑛 with

𝜎′
𝑖 ∈ Σ and |𝜎′

𝑖| ≤ |𝜎𝑖| for all 1 ≤ 𝑖 ≤ 𝑛. Hence ‖ |𝜎1| +  ⋯ + |𝜎𝑛| ‖0
𝑋,𝑡 ≤ ‖𝜎1‖0

𝑋,𝑡 +  ⋯ + ‖𝜎𝑛‖0
𝑋,𝑡.

Letting 𝑛 → ∞ in (2) yields the first claim.

The first claimed display is obvious. For the second one, we define 𝜏𝑟 = inf{𝑡 ≥ 0 : |(𝜎 ⋅ 𝑋)𝑡| > 𝑟}
whenever 𝑟 > 0 (which are stopping times since 𝜎 ⋅ 𝑋 is càdlàg). Note that we have

𝔼((𝜎 ⋅ 𝑋)∗
𝑡 ∧ 1) = ∫

1

0
ℙ((𝜎 ⋅ 𝑋)∗

𝑡 > 𝑟) 𝑑𝑟 ≤ ∫
1

0 ⎝
⎜⎜
⎛

1 ∧
𝔼(|(𝜎 ⋅ 𝑋)𝑡∧𝜏𝑟

| ∧ 1)

𝑟
⎠
⎟⎟
⎞

𝑑𝑟

= ∫
1

0 ⎝
⎜⎜⎜
⎛

1 ∧
𝔼(|((𝜎1[0,𝜏𝑟]) ⋅ 𝑋)

𝑡
| ∧ 1)

𝑟
⎠
⎟⎟⎟
⎞

𝑑𝑟 ≤ ∫
1

0
(1 ∧

‖𝜎‖𝑋,𝑡

𝑟
)𝑑𝑟

where we used Lemma 2.5 to obtain the second line and the claim follows readily. □
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2.2. Proof of the construction theorem

We can now start putting all the different pieces together. The following two propositions are at the
heart of the construction here.

Proposition 2.13. Suppose that 𝑋 is a good integrator and let 𝒜𝑋 be the set of 𝜉 ∈ 𝒫 with |𝜉| ≤
1 such that there are (𝜎𝑛) ⊆ Σ with |𝜎𝑛| ≤ 1 and ‖𝜎𝑛 − 𝜉‖𝑋,𝑡 → 0 as 𝑛 → ∞ for all 𝑡 ≥ 0. If
(𝜉𝑛) ⊆ 𝒜𝑋 with 𝜉𝑛 → 𝜉 pointwise, then 𝜉 ∈ 𝒜𝑋 and ‖𝜉 − 𝜉𝑛‖𝑋,𝑡 → 0 as 𝑛 → ∞ for all 𝑡 ≥ 0.

Proof. Throughout the proof, we fix 𝑡 ≥ 0. We set 𝜂 = 1 below so the proof can almost verbatim be
copied to give a proof of Proposition 2.14.

Step 1: We first show that if 𝜉𝑛 ↓ 0 then ‖𝜉𝑛‖𝑋,𝑡 → 0 as 𝑛 → ∞. The terms ‖𝜉𝑛‖𝑋,𝑡 are non-
increasing in 𝑛, so it suffices to show ‖𝜉𝑛‖𝑋,𝑡 → 0 as 𝑛 → ∞ along a subsequence.

We first show that ‖𝜉𝑛 − 𝜉𝑚‖𝑋,𝑡 → 0 as 𝑚, 𝑛 → ∞. To this end, fix 𝜀 > 0 and take simple 0 ≤
𝜎𝑛 ≤ |𝜂| such that ‖𝜉𝑛 − 𝜎𝑛‖ ≤ 𝜀2−𝑛 for all 𝑛 ≥ 1. Now define ̃𝜎𝑛 = 𝜎1 ∧ ⋯ ∧ 𝜎𝑛 ∈ Σ. Then of course
𝜉𝑛 − 𝜎𝑛 ≤ 𝜉𝑛 − 𝜎̃𝑛 and

𝜉𝑛 − 𝜎̃𝑛 = (𝜉𝑛 − 𝜎1) ∨ ⋯ ∨ (𝜉𝑛 − 𝜎𝑛) ≤ (𝜉1 − 𝜎1) ∨ ⋯ ∨ (𝜉𝑛 − 𝜎𝑛)
≤ |𝜉1 − 𝜎1| + ⋯ + |𝜉𝑛 − 𝜎𝑛|

Hence |𝜉𝑛 − 𝜎̃𝑛| ≤ |𝜉1 − 𝜎1| + ⋯ + |𝜉𝑛 − 𝜎𝑛| and so by the triangle inequality, ‖𝜉𝑛 − 𝜎̃𝑛‖𝑋,𝑡 ≤
‖𝜉1 − 𝜎1‖𝑋,𝑡 + ⋯ + ‖𝜉𝑛 − 𝜎𝑛‖𝑋,𝑡 ≤ 𝜀. Thus

‖𝜉𝑛 − 𝜉𝑚‖𝑋,𝑡 ≤ ‖𝜉𝑛 − 𝜎̃𝑛‖𝑋,𝑡 + ‖𝜉𝑚 − 𝜎̃𝑚‖𝑋,𝑡 + ‖𝜎̃𝑛 − 𝜎̃𝑚 ‖𝑋,𝑡

≤ 2𝜀 + ‖𝜎̃𝑛 − 𝜎̃𝑚‖𝑋,𝑡 .

The first claim will follow once we show that ‖𝜎̃𝑛 − 𝜎̃𝑚‖𝑋,𝑡 → 0 as 𝑛, 𝑚 → ∞. To see this, it is enough
to show that for any subsequence (𝑛𝑘), we have ‖𝜎̃𝑛𝑘+1

− 𝜎̃𝑛𝑘
‖0
𝑋,𝑡 = ‖𝜎̃𝑛𝑘+1

− 𝜎̃𝑛𝑘
‖𝑋,𝑡 → 0 as 𝑘 →

∞. By Definition 2.7, we can take simple |𝜎′
𝑘| ≤ |𝜎̃𝑛𝑘

− 𝜎̃𝑛𝑘+1
| such that

‖𝜎̃𝑛𝑘
− 𝜎̃𝑛𝑘+1

‖0
𝑋,𝑡 ≤ 𝔼(|(𝜎′

𝑘 ⋅ 𝑋)𝑡| ∧ 1; 𝑡 < 𝜁𝑋) +
1
𝑘
.

Since ∑𝑘|𝜎′
𝑘| ≤ ∑𝑘(𝜎̃𝑛𝑘

− 𝜎̃𝑛𝑘+1
) ≤ |𝜂|, by Lemma 2.9, (𝜎′

𝑘 ⋅ 𝑋)𝑡 → 0 in probability as 𝑘 → ∞, so
‖𝜎̃𝑛𝑘

− 𝜎̃𝑛𝑘+1
‖0
𝑋,𝑡 → 0 as 𝑘 → ∞ as required.

So we have established that ‖𝜉𝑛 − 𝜉𝑚‖𝑋,𝑡 → 0 as 𝑚, 𝑛 → ∞. We can thus choose a subsequence
(𝑚𝑘) such that ‖𝜉𝑚𝑘+1

− 𝜉𝑚𝑘
‖𝑋,𝑡 ≤ 2−𝑘 for all 𝑘 ≥ 1. Since 𝜉𝑚𝑙

= ∑𝑘≥𝑙(𝜉𝑚𝑘
− 𝜉𝑚𝑘+1

),

‖𝜉𝑚𝑙
‖𝑋,𝑡 ≤ ∑

𝑘≥𝑙
 ‖𝜉𝑚𝑘+1

− 𝜉𝑚𝑘
‖𝑋,𝑡 ≤ 2 ⋅ 2−𝑙 → 0 as 𝑙 → ∞.

Step 2: Having established the first step, we can now prove the proposition. It is of course enough to
show ‖𝜉 − 𝜉𝑛‖𝑋,𝑡 → 0 as 𝑛 → ∞ since 𝜉 ∈ 𝒜𝑋 follows from an easy diagonal argument. The proof
strategy now uses ideas inspired by Egorov’s theorem.

Fix 𝜀 > 0 and let

𝜂(𝑛,𝑘)
𝑡 = |𝜂𝑡| 1(∃𝑚 ≥ 𝑛 : |𝜉𝑡 − (𝜉𝑚)𝑡| ≥ 1/𝑘).

Then 𝜂(𝑛,𝑘) is predictable, 0 ≤ 𝜂(𝑛,𝑘) ≤ |𝜂| and 𝜂(𝑛,𝑘) ↓ 0 as 𝑛 → ∞. Therefore by the first part, we can
take (𝑛𝑘) such that ‖𝜂𝑛𝑘,𝑘‖𝑋,𝑡 ≤ 𝜀2−(𝑘+1) for all 𝑘 ≥ 1. Hence
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‖𝜂‖𝑋,𝑡 ≤ ∑
𝑘≥1

‖𝜂(𝑛𝑘,𝑘)‖𝑋,𝑡 ≤
𝜀
2

where 𝜂𝑡 ≔ |𝜂𝑡| 1(∃𝑘, 𝑚 ≥ 𝑛𝑘 : |𝜉𝑡 − (𝜉𝑚)𝑡| ≥ 1/𝑘) ≤ ∑𝑘≥1 𝜂(𝑛𝑘,𝑘)
𝑡 . Hence for 𝑛 ≥ 𝑛𝑘

‖𝜉 − 𝜉𝑛‖𝑋,𝑡 ≤ ‖(𝜉 − 𝜉𝑛)1(∃𝑘, 𝑚 ≥ 𝑛𝑘 : |𝜉𝑡 − (𝜉𝑚)𝑡| ≥ 1/𝑘)‖𝑋,𝑡

+ ‖(𝜉 − 𝜉𝑛)1(∀𝑘, 𝑚 ≥ 𝑛𝑘 : |𝜉𝑡 − (𝜉𝑚)𝑡| ≤ 1/𝑘)‖𝑋,𝑡

≤ 2 ‖𝜂‖𝑋,𝑡 +
1
𝑘

‖1‖𝑋,𝑡

≤ 𝜀 +
1
𝑘

‖1‖0
𝑋,𝑡 ≤ 𝜀 +

1
𝑘
.

So if 𝑘 ≥ 1/𝜀 then ‖𝜉 − 𝜉𝑛‖𝑋,𝑡 ≤ 2𝜀 for all 𝑛 ≥ 𝑛𝑘 and the proof is complete. □

Proposition 2.14. Let 𝑋 be an adapted càdlàg process and suppose that 𝒫𝑏 admits a stochastic
calculus for 𝑋. Fix 𝜂 ∈ ℐ𝑋 and let 𝒜𝜂

𝑋 be the set of all 𝜉 ∈ 𝒫 with |𝜉| ≤ |𝜂| such that there are
(𝜌𝑛) ⊆ 𝒫𝑏 with |𝜌𝑛| ≤ |𝜂| and ‖𝜌𝑛 − 𝜉‖𝑋,𝑡 → 0 as 𝑛 → ∞ for all 𝑡 ≥ 0. If (𝜉𝑛) ⊆ 𝒜𝜂

𝑋 with 𝜉𝑛 →
𝜉 pointwise, then 𝜉 ∈ 𝒜𝜂

𝑋 and ‖𝜉 − 𝜉𝑛‖𝑋,𝑡 → 0 as 𝑛 → ∞ for all 𝑡 ≥ 0.

Proof. The proof is identical to the one of Proposition 2.13 except that we make use of Lemma 2.10
instead of Lemma 2.9. □

Lemma 2.15. Let 𝑋 be a good integrator, 𝜉 is predictable and |𝜉| ≤ 1. Then 𝜉 ∈ 𝒜𝑋 .

Proof. Let us begin with the following simple additivity observation: If 𝜉1, …, 𝜉𝑚 ∈ 𝒜𝑋 and
𝜆1, …, 𝜆𝑚 ∈ ℝ such that |𝜆1𝜉 + ⋯ + 𝜆𝑚𝜉𝑚| ≤ 1 then 𝜆1𝜉 + ⋯ + 𝜆𝑚𝜉𝑚 ∈ 𝒜𝑋 . Indeed, we can take
simple processes (𝜎(𝑛)

𝑖 ) such that |𝜎(𝑛)
𝑖 | ≤ 1 and ‖𝜎(𝑛)

𝑖 − 𝜉𝑖‖𝑋,𝑡 → 0 as 𝑛 → ∞ for all 𝑡 ≥ 0 and all
1 ≤ 𝑖 ≤ 𝑚. Then

‖∑
𝑚

𝑖=1
𝜆𝑖𝜉𝑖 − ((∑

𝑚

𝑖=1
𝜆𝑖𝜎

(𝑛)
𝑖 ) ∨ (−1)) ∧ 1‖

𝑋,𝑡

≤ ‖∑
𝑚

𝑖=1
𝜆𝑖𝜉𝑖 − (∑

𝑚

𝑖=1
𝜆𝑖𝜎

(𝑛)
𝑖 )‖

𝑋,𝑡

≤ ∑
𝑚

𝑖=1
|𝜆𝑖| ⋅ ‖𝜉𝑖 − 𝜎(𝑛)

𝑖 ‖𝑋,𝑡 → 0 as 𝑛 → ∞

where the first inequality follows from

|∑
𝑚

𝑖=1
𝜆𝑖𝜉𝑖 − ((∑

𝑚

𝑖=1
𝜆𝑖𝜎

(𝑛)
𝑖 ) ∨ (−1)) ∧ 1| ≤ |∑

𝑚

𝑖=1
𝜆𝑖𝜉𝑖 − (∑

𝑚

𝑖=1
𝜆𝑖𝜎

(𝑛)
𝑖 )|.

The claim follows since ((∑𝑚
𝑖=1 𝜆𝑖𝜎

(𝑛)
𝑖 ) ∨ (−1)) ∧ 1 is simple and bounded by 1. We can now begin

with the proof.

Step 1: Let 𝒟 be the set of 𝐴 ∈ 𝒫 with 1𝐴 ∈ 𝒜𝑋 . We first show that 𝒫 = 𝒟. Clearly Σ̃ ⊆ 𝒟 and
[0, ∞) × Ω ∈ 𝒟 so by Dynkin’s lemma, it suffices to show that 𝒟 is a Dynkin system. If 𝐴 ⊆ 𝐵 and
𝐴, 𝐵 ∈ 𝒟, then 1𝐵\𝐴 = 1𝐵 − 1𝐴 ∈ 𝒜𝑋 by the additivity observation made above. Now suppose that
(𝐴𝑛) ⊆ 𝒟 with 𝐴𝑛 ↑ 𝐴, then 1𝐴𝑛

∈ 𝒜𝑋 and by Proposition 2.13 1𝐴 ∈ 𝒜𝑋 and therefore 𝐴 ∈ 𝒟. We
thus conclude that 𝒟 is indeed a Dynkin system.
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Step 2: The process 2−𝑛⌊2𝑛𝜉⌋ is a linear combination of indicators on elements of 𝒫 and is bounded
by 1, and so by the additivity observation made above, 2−𝑛⌊2𝑛𝜉⌋ ∈ 𝒜𝑋 . Sine 2−𝑛⌊2𝑛𝜉⌋ → 𝜉 pointwise
as 𝑛 → ∞, the claim follows from Proposition 2.13. □
We are finally able to prove the main theorem which constructs the stochastic integral. The proof will
essentially just consist in applying all the results established up to now together.

Proof of Theorem 3.4. Combining Proposition 2.13 and Lemma 2.15 (together with a small scaling
argument) yields the following:

• For all 𝜉 ∈ 𝒫𝑏 there exist simple (𝜎𝑛) such that ‖𝜉 − 𝜎𝑛‖𝑋,𝑡 → 0 as 𝑛 → ∞ for all 𝑡 ≥ 0.
• If (𝜉𝑛) ⊆ 𝒫𝑏, 𝜉 ∈ 𝒫𝑏, 𝜉𝑛 → 𝜉 pointwise and |𝜉𝑛| ≤ 𝐶 for some deterministic constant 𝐶 < ∞, then

‖𝜉 − 𝜉𝑛‖𝑋,𝑡 → 0 as 𝑛 → ∞ for all 𝑡 ≥ 0.

For any 𝜉 ∈ 𝒫𝑏 take (𝜎𝑛) as above and observe that by Lemma 2.12

𝔼((𝜎𝑛 ⋅ 𝑋 − 𝜎𝑚 ⋅ 𝑋)∗
𝑡 ∧ 1; 𝑡 < 𝜁𝑋) ≤ (‖𝜎𝑛 − 𝜎𝑚‖𝑋,𝑡 ∧ 1)(1 − log(‖𝜎𝑛 − 𝜎𝑚‖𝑋,𝑡 ∧ 1)) → 0

as 𝑚, 𝑛 → ∞ for all 𝑡 ≥ 0. So (𝜎𝑛 ⋅ 𝑋) is Cauchy for u.c.p. convergence and it follows that there exists
a process which we call 𝜉 ⋅ 𝑋 such that 𝜎𝑛 ⋅ 𝑋 → 𝜉 ⋅ 𝑋 u.c.p. as 𝑛 → ∞. By a similar reasoning, we
see that this limit does not depend on the sequence (𝜎𝑛) chosen in the sense that the two limits will
a.s. be equal. By the construction, it in particular follows that

𝔼((𝜉 ⋅ 𝑋)∗
𝑡 ∧ 1; 𝑡 < 𝜁𝑋) ≤ (‖𝜉‖𝑋,𝑡 ∧ 1)(1 − log(‖𝜉‖𝑋,𝑡 ∧ 1)). (3)

for all 𝜉 ∈ 𝒫𝑏 and all 𝑡 ≥ 0. Let us now check that the processes 𝜉 ⋅ 𝑋 for 𝜉 ∈ 𝒫𝑏 satisfy the properties
in Definition 2.6. Indeed, (i) is clear, (ii) follows immediately from (3) and the second bullet point above,
and (iii) extends directly from the simple case.

To see the uniqueness part, let 𝒟 = {𝐴 ∈ 𝒫 : 1𝐴 ⋅ 𝑋 = 1𝐴 ∗ 𝑋 a.s}. Then by (i), Σ̃ ⊆ 𝒟 and
[0, ∞) × Ω ∈ 𝒟. Properties (ii) and (iii) easily imply that 𝒟 is a Dynkin system and so Σ̃ = 𝒫.
Approximating any 𝜉 ∈ 𝒫𝑏 by 2−𝑛⌊2𝑛𝜉⌋ which are linear combinations of indicators of elements in
𝒫 and again using (ii) combined with (iii) yields the uniqueness.

The second part of the theorem, namely that ℐ𝑋 admits a stochastic calculus for 𝑋 if 𝑋 is a good
integrator, is analogous and just uses Proposition 2.14 instead of Proposition 2.13 and (3) instead of
Lemma 2.12. □

Remark 2.16. One thing that is used in practice (and easy to check by definition) is the following:
If 𝑋 is a good integrator and 𝑌  is an adapted càdlàg process then 1[0,𝜁𝑌 )𝑌− ∈ ℐ𝑋 and when we
write 𝑌− ⋅ 𝑋 for the process (1[0,𝜁𝑌 )𝑌−) ⋅ 𝑋, except that we redefine it to be equal to 𝜕 on the
interval [𝜁𝑋 ∧ 𝜁𝑌 , ∞). By slight abuse of terminology, we also say that 𝑌  is 𝑋-integrable.

The reader can convince oneself of the fact that 𝑌− ⋅ 𝑋 is a good integrator and moreover that
if 𝑍 is an adapted càdlàg process then

𝑍− ⋅ (𝑌− ⋅ 𝑋) = (𝑍𝑌 )− ⋅ 𝑋 a.s.

One can of course also formulate and prove this principle for more general integrands 𝜉 instead
of 𝑍− (where one now needs an integrability assumption).
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3. Results on stochastic integrals
The main goal of this section will be to establish Itô’s formula. As a first step, we define the quadratic
variation and covariation processes which measure the amount of quadratic fluctuations a process
accumulates over time.

Definition 3.1. Suppose that 𝑋 and 𝑌  are good integrators, then we define the càdlàg process
[𝑋, 𝑌 ] with 𝜁[𝑋,𝑌 ] = 𝜁𝑋 ∧ 𝜁𝑌 , called the quadratic covariation process by

[𝑋, 𝑌 ] = 𝑋𝑌 − 𝑋0𝑌0 − 𝑋− ⋅ 𝑌 − 𝑌− ⋅ 𝑋.

We will also write [𝑋] = [𝑋, 𝑋] which is called the quadratic variation process. We have the
polarization identity [𝑋, 𝑌 ] = ([𝑋 + 𝑌 ] − [𝑋 − 𝑌 ])/4 a.s.

As the lemma below shows, [𝑋] has a non-decreasing version and we will always switch to
such a version. By the polarization identity [𝑋, 𝑌 ] therefore always has a finite variation version
and we agree to always switch to such a version in this case.

Since [𝑋, 𝑌 ] is then of finite variation, it is a good integrator with the stochastic integral clearly
agreeing with the Lebesgue-Stieltjes integral.

Whenever 𝑋 is càdlàg process, we may define Δ𝑋𝑡 = 𝑋𝑡 − 𝑋𝑡−. Then Δ𝑋𝑡 is non-zero for only
countably many 𝑡 < 𝜁𝑋 . For many technical purposes, it is best to think of the process Δ𝑋 as being
identified with the point process

∑
𝑡:Δ𝑋𝑡≠0

𝛿(𝑡,Δ𝑋𝑡).

By first verifying the following for simple processes and extending the result using u.c.p. convergence,
it is a straightforward to check, that Δ(𝜉 ⋅ 𝑋)𝑡 = 𝜉𝑡Δ𝑋𝑡 for all 𝑡 < 𝜁𝑋 a.s. whenever 𝑋 is a good
integrator and 𝜉 ∈ ℐ𝑋 . In particular, if 𝑋 is continuous a.s. then so is 𝜉 ⋅ 𝑋. Moreover, by definition
Δ[𝑋, 𝑌 ]𝑡 = Δ𝑋𝑡Δ𝑌𝑡 for all 𝑡 < 𝜁𝑋 ∧ 𝜁𝑌  a.s.

Lemma 3.2. Suppose that 𝑋 and 𝑌  are good integrators, and for each 𝑛 let (𝜏𝑛
𝑚)𝑚 be a non-

decreasing sequence of stopping times such that 𝜏𝑛
0 = 0, 𝜏𝑛

𝑚 → ∞ as 𝑚 → ∞. Also assume that

max
𝑚≥0

 |(𝜏𝑛
𝑚+1 ∧ 𝑡) − (𝜏𝑛

𝑚 ∧ 𝑡)| → 0 as 𝑛 → ∞ for all 𝑡 ≥ 0.

Let 𝐴 be an adapted càdlàg process, then

𝐴(𝑛)
𝑋 ≔ ∑

𝑚≥0
𝐴𝜏𝑛

𝑚
(𝑋⋅∧𝜏𝑛

𝑚+1
− 𝑋⋅∧𝜏𝑛

𝑚
) → 𝐴− ⋅ 𝑋 u.c.p. as 𝑛 → ∞.

Moreover, [𝑋] has a version which is non-decreasing process on [0, 𝜁𝑋) and [𝑋, 𝑌 ] has a finite
variation version on [0, 𝜁𝑋) (to which we switch). Finally,

𝐴(𝑛)
𝑋,𝑌 ≔ ∑

𝑚≥0
𝐴𝜏𝑛

𝑚
(𝑋⋅∧𝜏𝑛

𝑚+1
− 𝑋⋅∧𝜏𝑛

𝑚
)(𝑌⋅∧𝜏𝑛

𝑚+1
− 𝑌⋅∧𝜏𝑛

𝑚
)

→ 𝐴− ⋅ [𝑋, 𝑌 ] u.c.p. as 𝑛 → ∞.
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Proof. To get the first convergence statement, note that 𝐴(𝑛)
𝑋  is still adapted and has the càdlàg property

since on any compact time interval, only finitely terms contribute to the sum. Now observe that 𝐴(𝑛)
𝑋 =

𝜉(𝑛) ⋅ 𝑋 on [0, 𝜁𝐴−⋅𝑋) = [0, 𝜁𝐴 ∧ 𝜁𝑋) a.s. where

𝜉(𝑛) = ∑
𝑚≥0

𝐴𝜏𝑛
𝑚

1(𝐴𝜏𝑛
𝑚

≠ 𝜕)1(𝜏𝑛
𝑚,𝜏𝑛

𝑚+1].

We have |𝜉𝑛| ≤ 𝑋∗
−1[0,𝜁𝑋) for all 𝑛 ≥ 1 and the right hand side is 𝑋-integrable since 𝑋∗ is adapted and

càdlàg. Since 𝜉𝑛 → 𝐴−1[0,𝜁𝐴) pointwise as 𝑛 → ∞, the first convergence claim follows from stochastic
dominated convergence.

To see that [𝑋] is non-decreasing a.s. we observe that

∑
𝑚≥0

(𝑋⋅∧𝜏𝑛
𝑚+1

− 𝑋⋅∧𝜏𝑛
𝑚

)
2

= 𝑋2 − 𝑋2
0 − 2 ∑

𝑚≥0
𝑋𝜏𝑛

𝑚
(𝑋⋅∧𝜏𝑛

𝑚+1
− 𝑋⋅∧𝜏𝑛

𝑚
)

→ 𝑋2 − 𝑋2
0 − 2𝑋− ⋅ 𝑋

u.c.p. as 𝑛 → ∞ by the first part, and the claim follows from the fact that the right hand side equals
[𝑋] a.s. and it is easy to see that the limit of the terms on the left is non-decreasing a.s.

Now to see the last claim, we observe that

𝐴(𝑛)
𝑋,𝑌 = ∑

𝑚≥0
𝐴𝜏𝑛

𝑚
((𝑋𝑌 )⋅∧𝜏𝑛

𝑚+1
− (𝑋𝑌 )⋅∧𝜏𝑛

𝑚
) − ∑

𝑚≥0
(𝐴𝑋)𝜏𝑛

𝑚
(𝑌⋅∧𝜏𝑛

𝑚+1
− 𝑌⋅∧𝜏𝑛

𝑚
)

− ∑
𝑚≥0

(𝐴𝑌 )𝜏𝑛
𝑚

(𝑋⋅∧𝜏𝑛
𝑚+1

− 𝑋⋅∧𝜏𝑛
𝑚

)

→ 𝐴− ⋅ (𝑋𝑌 ) − (𝐴𝑋)− ⋅ 𝑌 − (𝐴𝑌 )− ⋅ 𝑋

u.c.p. as 𝑛 → ∞ by applying the first part of the lemma three times. Note that 𝑋𝑌  is a good integrator
since 𝑋𝑌 = 𝑋0𝑌0 + 𝑋− ⋅ 𝑌 + 𝑌− ⋅ 𝑋 a.s., and in fact using this equation at the end of the display
above yields the claim by Remark 2.16. □

Remark 3.3. Note that if 𝑋 is a good integrator, then

∑
𝑠≤𝑡

(Δ𝑋𝑠)
2 = ∑

𝑠≤𝑡
Δ[𝑋]𝑠 ≤ [𝑋]𝑡 < ∞ for all 𝑡 < 𝜁𝑋

since [𝑋] is non-decreasing.

We are now ready to prove Itô’s formula, essentially the fundamental theorem of stochastic calculus. It
is worth mentioning that this is not the most general version possible, for instance, one can generalize
the result by replacing 𝑓  by a random twice continuously differentiable function 𝑓 : ℝ × 𝐷 → ℝ with
the property that 𝑓(𝑡, ⋅) is measurable with respect to ℱ𝑡 for all 𝑡 ≥ 0 (i.e. an adaptedness property
holds for this function) and consider 𝑓(𝑡, 𝑋𝑡) instead. The variant just mentioned is for instance
relevant in the context of Schramm-Loewner evolutions.
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Theorem 3.4 (Itô’s formula). Suppose that 𝑋1, …, 𝑋𝑑 are good integrators such that 𝑋 =
(𝑋1, …, 𝑋𝑑) is such that 𝑋𝑡, 𝑋𝑡− ∈ 𝐷 ⊆ ℝ𝑑 for all 𝑡 < 𝜁𝑋 = 𝜁𝑋1 ∧ … ∧ 𝜁𝑋𝑑 , 𝐷 some open set
and 𝑓 : 𝐷 → ℝ is twice continuously differentiable, then

𝑓(𝑋𝑇 ) = 𝑓(𝑋0) + ∑
𝑖

∫
𝑇

0
𝜕𝑖𝑓(𝑋𝑡−)𝑑𝑋𝑡 +

1
2

∑
𝑖,𝑗

∫
𝑇

0
𝜕𝑖𝑗𝑓(𝑋𝑡−)𝑑[𝑋𝑖, 𝑋𝑗]

𝑡

+ ∑
𝑡≤𝑇

(Δ𝑓(𝑋𝑡) − ∑
𝑖

𝜕𝑖𝑓(𝑋𝑡−)Δ𝑋𝑖
𝑡 −

1
2

∑
𝑖,𝑗

𝜕𝑖𝑗𝑓(𝑋𝑡−)Δ𝑋𝑖
𝑡Δ𝑋𝑗

𝑡)

for all 𝑇 ≥ 0 almost surely (by the conventions we made, both sides equal 𝜕 if 𝑇 ≥ 𝜁𝑋). Note that
the sum over times 𝑡 ≤ 𝑇  above converges absolutely and defines an adapted càdlàg process since
∑𝑡≤𝑇 (Δ𝑋𝑖

𝑡)
2 < ∞ for all 𝑖 ≤ 𝑑 and 𝑇 < 𝜁𝑋 .

Proof. Since both sides of the formula are càdlàg, it suffices that almost surely the claim holds for a
fixed 𝑇 ≥ 0. Let (𝜏𝑛

𝑚) be any sequence satisfying the requirements of Lemma 3.2 and fix 𝑇 < 𝜁𝑋 . For
0 ≤ 𝑠 < 𝑡 ≤ 𝑇  let 𝑅𝑠,𝑡 be defined via

𝑓(𝑋𝑡) = 𝑓(𝑋𝑠) + ∑
𝑖

𝜕𝑖𝑓(𝑋𝑠)(𝑋𝑖
𝑡 − 𝑋𝑖

𝑠) +
1
2

∑
𝑖,𝑗

𝜕𝑖𝑗𝑓(𝑋𝑠)(𝑋𝑖
𝑡 − 𝑋𝑖

𝑠)(𝑋𝑗
𝑡 − 𝑋𝑗

𝑠) + 𝑅𝑠,𝑡.

Since 𝑋([0, 𝑇 ]) ∪ 𝑋−([0, 𝑇 ]) is compact and 𝑓  is twice continuously differentiable, we get

𝐶𝜀 ≔ sup
0≤𝑠<𝑡≤𝑇:0<‖𝑋𝑠−𝑋𝑡‖≤𝜀

|𝑅𝑠,𝑡|
‖𝑋𝑡 − 𝑋𝑠‖2 → 0 as 𝜀 → 0.

By using the definition of 𝑅𝑠,𝑡 and a telescoping series, we obtain

𝑓(𝑋𝑇 ) − 𝑓(𝑋0) = ∑
𝑚≥0

(𝑓(𝑋𝑇∧𝜏𝑛
𝑚+1

) − 𝑓(𝑋𝑇∧𝜏𝑛
𝑚

))

= ∑
𝑖

∑
𝑚≥0

𝜕𝑖𝑓(𝑋𝜏𝑛
𝑚

)(𝑋𝑖
𝑇∧𝜏𝑛

𝑚+1
− 𝑋𝑖

𝑇∧𝜏𝑛
𝑚

)

+
1
2

∑
𝑖,𝑗

∑
𝑚≥0

𝜕𝑖𝑗𝑓(𝑋𝜏𝑛
𝑚

)(𝑋𝑖
𝑇∧𝜏𝑛

𝑚+1
− 𝑋𝑖

𝑇∧𝜏𝑛
𝑚

)(𝑋𝑗
𝑇∧𝜏𝑛

𝑚+1
− 𝑋𝑗

𝑇∧𝜏𝑛
𝑚

)

+ ∑
𝑚≥0

𝑅𝑇∧𝜏𝑛
𝑚,𝑇∧𝜏𝑛

𝑚+1
.

By Lemma 3.2 it therefore suffices to show that

∑
𝑚≥0

𝑅𝑇∧𝜏𝑛
𝑚,𝑇∧𝜏𝑛

𝑚+1
→ ∑

𝑡≤𝑇
𝐽𝑡 in probability as 𝑛 → ∞ on the event {𝑇 < 𝜁𝑋},

where 𝐽𝑡 = Δ𝑓(𝑋𝑡) − ∑
𝑖

𝜕𝑖𝑓(𝑋𝑡−)Δ𝑋𝑖
𝑡 −

1
2

∑
𝑖,𝑗

𝜕𝑖𝑗𝑓(𝑋𝑡−)Δ𝑋𝑖
𝑡Δ𝑋𝑗

𝑡 .

To see this, fix 𝜀 > 0 and define the finite set 𝒯𝜀 = {𝑡 ≤ 𝑇 : ‖Δ𝑋𝑡‖ ≥ 𝜀}. Moreover, we let 𝐼𝑛
𝜀 =

{𝑚 ≥ 0 : 𝒯𝜀 ∩ [𝑇 ∧ 𝜏𝑛
𝑚, 𝑇 ∧ 𝜏𝑛

𝑚+1) ≠ ∅}. Then we have the deterministic statement

∑
𝑚∈𝐼𝑛

𝜀

𝑅𝑇∧𝜏𝑛
𝑚,𝑇∧𝜏𝑛

𝑚+1
→ ∑

𝑡≤𝑇: ‖Δ𝑋𝑡‖≥𝜀
𝐽𝑡 as 𝑛 → ∞ on {𝑇 < 𝜁𝑋}.

For 𝑛 sufficiently large, we have ‖𝑋𝑇∧𝜏𝑛
𝑚+1

− 𝑋𝑇∧𝜏𝑛
𝑚+1

‖ ≤ 2𝜀 for all 𝑚 ∉ 𝐼𝑛
𝜀  and hence
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∑
𝑚∈𝐼𝑛

𝜀

|𝑅𝑇∧𝜏𝑛
𝑚,𝑇∧𝜏𝑛

𝑚+1
| ≤ 𝐶2𝜀 ∑

𝑚≥0
‖𝑋𝑇∧𝜏𝑛

𝑚+1
− 𝑋𝑇∧𝜏𝑛

𝑚+1
‖2 → 𝐶2𝜀 ∑

𝑖
[𝑋𝑖]

𝑇

in probability as 𝑛 → ∞ on the event {𝑇 < 𝜁𝑋}.

The claim now follows directly from 𝐶2𝜀 → 0 as 𝜀 → 0 and the absolute convergence of the series
∑𝑡≤𝑇 𝐽𝑡 when 𝑇 < 𝜁𝑋 . □
To conclude this section, we mention the following result for time changes.

Theorem 3.5 (Time changes). Suppose that 𝑋 is a good integrator and that 𝜏𝑡 are stopping times
for all 𝑡 ≥ 0 such that 𝜏  is a non-decreasing and right-continuous map, and define the random
time 𝜁𝑋∘𝜏 = inf{𝑡 ≥ 0 : 𝜏𝑡 ≥ 𝜁𝑋}. Then the process 𝑋 ∘ 𝜏  is a good integrator with respect to the
filtration (ℱ𝜏𝑡

)
𝑡≥0

 and for any 𝜉 ∈ ℐ𝑋 we have 𝜉 ∘ 𝜏 ∈ ℐ𝑋∘𝜏  with

(𝜉 ∘ 𝜏) ⋅ (𝑋 ∘ 𝜏) = (𝜉 ⋅ 𝑋) ∘ 𝜏 a.s.

Proof. This is immediate whenever 𝜉 (and therefore 𝜉 ∘ 𝜏 ) is a simple process and extends easily to the
general case. □

4. Results on integrability
In this section, we will mention the setting in which the result from the remainder of the note are
supposed to be applied. The main point is that martingales turn out to be good integrators precisely
because their unbiased fluctuations induce the stochastic cancellations needed to make the definition
of being a good integrator true.

We say that an adapted càdlàg process 𝑀  is a local martingale (resp. locally square integrable
martingale) if there are stopping times 𝜏𝑛 < 𝜁𝑀  such that 𝜏𝑛 → 𝜁𝑀  a.s. as 𝑛 → ∞ and such that 𝑀𝜏𝑛

is a martingale (resp. square integrable martingale) for all 𝑛 ≥ 1. An adapted càdlàg process 𝐶 with
values in [0, ∞] ∪ {𝜕} is called locally integrable if there exist stopping times 𝜏𝑛 < 𝜁𝐶  satisfying 𝜏𝑛 →
𝜁𝐶  a.s. as 𝑛 → ∞ and 𝐶𝜏𝑛  is an integrable process for all 𝑛 ≥ 1. Moreover, we say that 𝐴 is a finite
variation process if 𝐴 has finite variation on [0, 𝑇 ] for all 𝑇 < 𝜁𝐴.

Theorem 4.1. Let 𝑋 = 𝑀 + 𝐴 where 𝑀  is a locally square integrable càdlàg martingale and 𝐴
is a càdlàg adapted finite variation process. Then 𝑋 is a good integrator. Suppose that 𝜉 ∈ 𝒫, that
𝜉2 ⋅ [𝑀] is a locally integrable process and

∫
𝑡

0
|𝜉𝑠| |𝑑𝐴𝑠| < ∞ for all 𝑡 < 𝜁𝑋 a.s.

Then 𝜉 ∈ ℐ𝑋 . Also 𝜉 ⋅ 𝑋 = 𝜉 ⋅ 𝑀 + 𝜉 ⋅ 𝐴 a.s. and 𝜉 ⋅ 𝑀  is a locally square integrable martingale
while 𝜉 ⋅ 𝐴 is a finite variation process a.s.

Proof. Without loss of generality, we may assume that 𝜁𝑋 = 𝜁𝑀 = 𝜁𝐴. From Lebesgue-Stieltjes
integration one deduces that 𝐴 is a good integrator and 𝜉 ∈ ℐ𝑋 by the assumption on the integral of
𝜉 with respect to the total variation process of 𝐴. So it remains to consider 𝑀  as an integrator.

Before we begin, let us make the observation that if (𝑁𝑛) are càdlàg martingales (with 𝜁𝑁𝑛 = ∞
for all 𝑛 ≥ 1) such that

sup
𝑛≥1

𝔼((𝑁𝑛
𝑡 )2) for all 𝑡 ≥ 0
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and 𝑁  is an adapted càdlàg process (with 𝜁𝑁 = ∞) such that 𝑁𝑛 → 𝑁  u.c.p., then 𝑁  is a square
integrable martingale. The martingale property follows from the fact that convergence in probability
together with 𝐿2 boundedness (in particular uniform integrability) implies 𝐿1 convergence, and the
square integrability from Fatou’s lemma.

Let (𝜏𝑛) be a sequence of stopping times such that 𝜏𝑛 < 𝜁𝑀 , 𝜏𝑛 → 𝜁𝑀  a.s. as 𝑛 → ∞, 𝑀𝜏𝑛  is a
square integrable martingale for all 𝑛 ≥ 1, |𝑀−| ≤ 𝑛 on [0, 𝜏𝑛] and

𝔼((𝜉2 ⋅ 𝑀𝜏𝑛)
𝑡
) < ∞ for all 𝑡 ≥ 0 and 𝑛 ≥ 1.

Then for a simple bounded process 𝜎 we have

ℙ(|(𝜎 ⋅ 𝑀)𝑡| > 𝐶, 𝑡 < 𝜁𝑀) ≤ ℙ(|(𝜎 ⋅ 𝑀𝜏𝑛)𝑡| > 𝐶) + ℙ(𝜏𝑛 < 𝑡 < 𝜁𝑀)

≤
1

𝐶2  𝔼((𝜎 ⋅ 𝑀𝜏𝑛)2
𝑡 ) + ℙ(𝜏𝑛 < 𝑡 < 𝜁𝑀).

(4)

Let 𝜎 be of the form (1) and without loss of generality assume that 𝜏𝑖 ≤ 𝜏𝑖+1 for all 𝑖 < 𝑛 The key is
then that by the martingale property and the definition of simple integrands,

𝔼((𝜎 ⋅ 𝑀𝜏𝑛)2
𝑡 ) = ∑

𝑛

𝑖=1
𝔼(𝛼2

𝑖 (𝑀𝜏𝑛
𝜏𝑖∧𝑡 − 𝑀𝜏𝑛

𝜏𝑖∧𝑡)
2
)

+ ∑
1≤𝑖<𝑗≤𝑛

𝔼(𝛼𝑖𝛼𝑗(𝑀𝜏𝑛
𝜏𝑖∧𝑡 − 𝑀𝜏𝑛

𝜏𝑖∧𝑡)(𝑀𝜏𝑛
𝜏𝑗∧𝑡 − 𝑀𝜏𝑛

𝜏𝑗∧𝑡))

= ∑
𝑛

𝑖=1
𝔼(𝛼2

𝑖 (𝑀𝜏𝑛
𝜏𝑖∧𝑡 − 𝑀𝜏𝑛

𝜏𝑖∧𝑡)
2
)

+ ∑
1≤𝑖<𝑗≤𝑛

𝔼(𝛼𝑖𝛼𝑗(𝑀𝜏𝑛
𝜏𝑖∧𝑡 − 𝑀𝜏𝑛

𝜏𝑖∧𝑡)𝔼(𝑀𝜏𝑛
𝜏𝑗∧𝑡 − 𝑀𝜏𝑛

𝜏𝑗∧𝑡 | ℱ𝜏𝑗∧𝑡))

= ∑
𝑛

𝑖=1
𝔼(𝛼2

𝑖 (𝑀𝜏𝑛
𝜏𝑖∧𝑡 − 𝑀𝜏𝑛

𝜏𝑖∧𝑡)
2
).

This is really the key insight of Itô and known as the Itô isometry. If |𝜎| ≤ 1 then

𝔼((𝜎 ⋅ 𝑀𝜏𝑛)2
𝑡 ) ≤ ∑

𝑛

𝑖=1
𝔼((𝑀𝜏𝑛

𝜏𝑖∧𝑡 − 𝑀𝜏𝑛
𝜏𝑖∧𝑡)

2
) = ∑

𝑛

𝑖=1
𝔼((𝑀𝜏𝑛

𝜏𝑖∧𝑡)
2

− (𝑀𝜏𝑛
𝜏𝑖∧𝑡)

2
)

≤ 𝔼((𝑀𝜏𝑛
𝑡 )2) < ∞.

One readily deduces that 𝑀  is a good integrator, and one easily checks that 𝜎 ⋅ 𝑀𝜏𝑛  is a square
integrable martingale and so 𝜎 ⋅ 𝑀  is a locally square integrable martingale. Thus the stochastic
integral extends to bounded predictable processes and 𝜌 ⋅ 𝑀  is a locally square integrable martingale
for all 𝜌 ∈ 𝒫𝑏 by the observation made at the beginning of the proof.

In particular, (𝑀− ⋅ 𝑀)𝜏𝑛 = (𝑀𝜏𝑛)− ⋅ 𝑀𝜏𝑛  a.s. is a square integrable martingale and from the
definition of [𝑀] and the square martingale property of 𝑀𝜏𝑛  it follows that

𝔼((𝜎 ⋅ 𝑀𝜏𝑛)2
𝑡 ) = ∑

𝑛

𝑖=1
𝔼(𝛼2

𝑖 ([𝑀𝜏𝑛 ]𝜏𝑖∧𝑡 − [𝑀𝜏𝑛 ]𝜏𝑖∧𝑡)) = 𝔼((𝜎2 ⋅ [𝑀𝜏𝑛 ])
𝑡
).

By approximating a bounded predictable process pointwise by by simple processes all bounded by
some common constant (it is a standard argument in measure theory that this is possible) and using
Fatou’s lemma on the left and dominated convergence on the right, we get
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𝔼((𝜌 ⋅ 𝑀𝜏𝑛)2
𝑡 ) ≤ 𝔼((𝜌2 ⋅ [𝑀𝜏𝑛 ])

𝑡
)

whenever 𝜌 ∈ 𝒫𝑏. Showing that 𝜉 ∈ ℐ𝑀  is then straightforward by using a variant of (4) combined
with the previous display. The local square martingale property of 𝜉 ⋅ 𝑀  follows again by the
observation made at the beginning of the proof after taking a sequence of bounded predictable
processes converging pointwise to 𝜉 and all bounded by |𝜉|. □

Remark 4.2. The above can be generalized. Indeed, one can show that all local martingales are
good integrators and that it is enough to assume that (𝜉2 ⋅ [𝑀])1/2 is locally integrable to ensure
that 𝜉 ∈ ℐ𝑋 (to see this one needs to invoke the BDG inequality). However, in this generalized
setting, it is no longer true that 𝜉 ⋅ 𝑀  is a local martingale which makes this generalization less
useful for applications; a counterexample is Emery’s example as mentioned in [1].

Let us conclude these notes by mentioning perhaps the most important case: Let us fix a diffusivity
parameter 𝜎 ≥ 0, drift 𝜇 ∈ ℝ and an intensity measure 𝜇 on ℝ satisfying

∫
[−1,1]

𝑥2𝜇(𝑑𝑥) < ∞ and 𝜇(ℝ \ [−1, 1]) < ∞.

As always, we define the Lévy process 𝑋 = 𝑀 + 𝐴 in terms of càdlàg processes 𝑀  and 𝐴 given via

𝑀𝑡 = 𝜎𝐵𝑡 + ∫
[0,𝑡]×[−1,1]

𝑥(𝑃 − 𝜆 ⊗ 𝜇)(𝑑𝑠, 𝑑𝑥) , 𝐴𝑡 = 𝜇𝑡 + ∫
[0,𝑡]×(ℝ\[−1,1])

𝑥𝑃(𝑑𝑠, 𝑑𝑥)

with 𝑃  being a Poisson point process with intensity measure 𝜆 ⊗ 𝜇 where 𝜆 denotes the Lebesgue
measure. Then 𝑀  is a square integrable martingale and 𝐴 is a finite variation process. Hence 𝑋 is a
good integrator and one can show using Lemma 3.2 that

[𝑀]𝑡 = 𝜎2𝑡 + ∑
𝑠≤𝑡

(Δ𝑀𝑠)
2 = 𝜎2𝑡 + ∑

𝑠≤𝑡: |Δ𝑋𝑠|≤1
(Δ𝑋𝑠)

2 for all 𝑡 ≥ 0 a.s.

From this it follows that 𝜉 ∈ ℐ𝑋 provided that the process

⎝
⎜⎛𝜎2 ∫

𝑡

0
𝜉2
𝑠𝑑𝑠 + ∑

𝑠≤𝑡: |Δ𝑋𝑠|≤1
𝜉2
𝑠(Δ𝑋𝑠)

2

⎠
⎟⎞

𝑡≥0

is locally integrable and

|𝜇| ∫
𝑡

0
|𝜉𝑠| 𝑑𝑠 < ∞ for all 𝑡 ≥ 0 a.s.

Note that one always has

∑
𝑠≤𝑡: |Δ𝑋𝑠|>1

|𝜉𝑠| ⋅ |Δ𝑋𝑠| < ∞ for all 𝑡 ≥ 0 a.s.

simply because there are only finitely many jumps of magnitude > 1 on each interval [0, 𝑡] when 𝑡 ≥ 0.
In fact, in this particular case, the whole theory can also be derived by combining classical Itô calculus
just for Brownian motion with Palm’s formula for Poisson point processes.
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