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1. Introduction
The goal of this note is to explain how to prove distributional convergence of random walks on compact
Lie groups to the Haar measure. We refer to [1] which explains the underlying theory very nicely
but goes in a different and in particular much more quantitative direction than this note. The main
message here is that large parts of probability theory for real-valued random processes rely on Fourier
transforms to understand distributional asymptotics (mixing behaviors being an example). If we are
now looking at random processes on a Lie group, the natural thing to do is to look at irreducible
representations and these will form the analogous objects to the Fourier modes on the real line.

2. Representation theory review
Suppose that 𝐺 is a compact Lie group and 𝜇 is the Haar measure on 𝐺. We label all the irreducible
representations of 𝐺 by 𝐺̂, that is

𝜋𝜆 : 𝐺 → 𝑈(𝑉𝜆)

is an irreducible representations from 𝐺 on a Hilbert space 𝑉𝜆 of dimension 𝐷𝜆 for any 𝜆 ∈ 𝐺̂. The
key result is then the following. Below End(𝑉𝜆) denotes the space of linear maps from 𝑉𝜆 to itself and
we endow this vector space with the inner product ⟨𝜑, 𝜓⟩End(𝑉𝜆) = 𝐷𝜆 tr(𝜑

†𝜓) for 𝜑,𝜓 ∈ End(𝑉𝜆).

Theorem 2.1 (Peter-Weyl). The map ℱ defined below is a linear isometry and we also have the
explicit formula for ℱ−1 given below.

ℱ : 𝐿2(𝐺, 𝜇) → ℓ2((End(𝑉𝜆))𝜆∈𝐺),

ℱ𝑓 = (∫𝜋𝜆(𝑔)𝑓(𝑔)𝜇(𝑑𝑔))
𝜆
,

ℱ−1(𝑎𝜆)𝜆 =
⎝
⎜⎛𝑔 ↦∑

𝜆∈𝐺

𝐷𝜆 tr(𝑎𝜆𝜋
†
𝜆(𝑔))

⎠
⎟⎞.

We will write 𝜋𝜆0  for the trivial representation with character tr(𝜋𝜆0(𝑔)) = 1 for all 𝑔 ∈ 𝐺 and note
character orthogonality, namely

∫tr(𝜋𝜆(𝑔)) tr(𝜋
†
𝜆′(𝑔))𝜇(𝑑𝑔) = 𝛿𝜆𝜆′

and so in particular

∫tr(𝜋𝜆(𝑔))𝜇(𝑑𝑔) = 𝛿𝜆𝜆0 .
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3. Random walks on groups
So let us now consider some measure 𝜈 on 𝐺 and let (𝐴𝑛) be i.i.d. copies of 𝜈, and let 𝑋0 = 𝑒 and
𝑋𝑛 = 𝐴𝑛 ⋯ 𝐴1 for 𝑛 ≥ 1 where 𝑒 denotes the identity element of 𝐺. Consider 𝑓 ∈ 𝐿2(𝐺, 𝜇) which
we write using the Peter-Weyl theorem as

𝑓(𝑔) = ∑
𝜆∈𝐺

𝐷𝜆 tr((ℱ𝑓)𝜆𝜋
†
𝜆(𝑔)).

Ignoring any issues about interchanging limits in the following two paragraphs, we therefore obtain
that we have

𝔼(𝑓(𝑋𝑛)) = ∑
𝜆∈𝐺

𝐷𝜆 tr((ℱ𝑓)𝜆𝔼(𝜋
†
𝜆(𝐴𝑛 ⋯ 𝐴1)))

= ∑
𝜆∈𝐺

𝐷𝜆 tr((ℱ𝑓)𝜆𝔼(𝜋
†
𝜆(𝐴1))

𝑛
).

It follows that if ‖𝔼(𝜋𝜆(𝐴1))‖op < 1 for all 𝜆 ≠ 𝜆0 then

𝔼(𝑓(𝑋𝑛)) → tr((ℱ𝑓)𝜆0) = ∫𝑓(𝑔)𝜇(𝑑𝑔) as 𝑛 → ∞.

Making the above formal yields the following proposition.

Proposition 3.1. The following two assertions are equivalent: (i) We have ‖ ∫ 𝜋𝜆(𝑔)𝜈(𝑑𝑔)‖op <
1 for all 𝜆 ≠ 𝜆0, and (ii) the law of 𝑋𝑛 converges weakly to 𝜇 as 𝑛 → ∞.

Proof. Consider the set

𝒮 = {(𝑔 ↦∑
𝜆∈𝐹

𝐷𝜆 tr(𝑎𝜆𝜋
†
𝜆(𝑔))) : 𝑎𝜆 ∈ End(𝑉𝜆) ∀𝜆 ∈ 𝐹 with 𝐹 ⊆ 𝐺̂ finite}.

Using the Peter-Weyl theorem it is not difficult to check that 𝒮 satisfies the conditions of the Stone-
Weierstrass theorem and is therefore dense in (𝐶(𝐺), ‖ ⋅ ‖∞).

Let us first show that (i) implies (ii): By standard probabilistic results and the compactness of 𝐺, it
is enough to show that any subsequential limit of the laws of the 𝑋𝑛 random variables equals 𝜇; let
us therefore write 𝜇′ for such a subsequential limit. For elements 𝑓 ∈ 𝒮 the discussion just before the
proposition is rigorous and it follows that

∫𝑓(𝑔)𝜇′(𝑑𝑔) = ∫𝑓(𝑔)𝜇(𝑑𝑔) ∀𝑓 ∈ 𝒮.

The fact that 𝒮 is dense in (𝐶(𝐺), ‖ ⋅ ‖∞) implies that this extends to all 𝑓 ∈ 𝐶(𝐺) and hence 𝜇′ = 𝜇
by standard measure theory results as required.

To see that (ii) implies (i), suppose that ‖ ∫ 𝜋𝜆(𝑔)𝜈(𝑑𝑔)‖op = 1 for some 𝜆 ≠ 𝜆0 and set 𝑓(𝑔) =
tr(𝜋†𝜆(𝑔)) so that 𝑓  is a continuous function on 𝐺. Then

𝔼(𝑓(𝑋𝑛)) = tr((∫𝜋
†
𝜆(𝑔)𝜈(𝑑𝑔))

𝑛

)↛ 0 = ∫tr(𝜋†𝜆(𝑔)𝜇(𝑑𝑔)) = ∫𝑓(𝑔)𝜇(𝑑𝑔)

as 𝑛 → ∞ which completes the proof. □
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Recall that 𝜈∗𝑘 denotes the 𝑘-fold convolution of the measure 𝜈 with respect to the group structure on
𝐺, so 𝜈∗𝑘 is the law of 𝑋𝑘.

Corollary 3.2. If supp(𝜈∗𝑘) = 𝐺 for some 𝑘 ≥ 1 then the law of 𝑋𝑛 converges weakly to 𝜇 as
𝑛 → ∞.

Proof. We have ‖ ∫ 𝜋𝜆(𝑔)𝜈∗𝑘(𝑑𝑔)‖op = ‖∫𝜋𝜆(𝑔)𝜈(𝑑𝑔)‖𝑘op so it is enough to show that the left hand
side of this equality is < 1 for 𝜆 ≠ 𝜆0. If it was = 1, since by assumption supp(𝜈∗𝑘) = 1, this would
imply by continuity of 𝜋𝜆 that there is a 𝑣 ∈ 𝑉𝜆 \ {0} such that 𝜋𝜆(𝑔)𝑣 = 𝑣 for all 𝑔 ∈ 𝐺 (note that
the eigenvalue has to be 1 due to the 𝑔 = 𝑒 case). Thus ⟨𝑣⟩ is an invariant subspace of 𝑉𝜆 and by
irreducibility 𝐷𝜆 = 1. Since 𝜋𝜆 is then the identity, in fact 𝜆 = 𝜆0. □
It is not hard to check that if supp(𝜈) has non-empty interior and 𝐺 is connected, then the condition
in the result is satisfied. To see this, one might want to use that the exponential map is surjective
whenever 𝐺 is connected.
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