Convergence of random walks on compact Lie groups to equilibrium

Matthis Lehmkuehler

04/05/2024

1. Introduction

The goal of this note is to explain how to prove distributional convergence of random walks on compact Lie groups to the Haar measure. We refer to [1] which explains the underlying theory very nicely but goes in a different and in particular much more quantitative direction than this note. The main message here is that large parts of probability theory for real-valued random processes rely on Fourier transforms to understand distributional asymptotics (mixing behaviors being an example). If we are now looking at random processes on a Lie group, the natural thing to do is to look at irreducible representations and these will form the analogous objects to the Fourier modes on the real line.

2. Representation theory review

Suppose that G is a compact Lie group and μ is the Haar measure on G. We label all the irreducible representations of G by \hat{G} , that is

$$\pi_{\lambda}: G \to U(V_{\lambda})$$

is an irreducible representations from G on a Hilbert space V_{λ} of dimension D_{λ} for any $\lambda \in \hat{G}$. The key result is then the following. Below $\operatorname{End}(V_{\lambda})$ denotes the space of linear maps from V_{λ} to itself and we endow this vector space with the inner product $\langle \varphi, \psi \rangle_{\operatorname{End}(V_{\lambda})} = D_{\lambda} \operatorname{tr}(\varphi^{\dagger}\psi)$ for $\varphi, \psi \in \operatorname{End}(V_{\lambda})$.

Theorem 2.1 (Peter-Weyl). The map \mathcal{F} defined below is a linear isometry and we also have the explicit formula for \mathcal{F}^{-1} given below.

$$\begin{split} \mathcal{F} &: L^2(G,\mu) \to \ell^2 \Big((\mathrm{End}(V_\lambda))_{\lambda \in \hat{G}} \Big), \\ \mathcal{F}f &= \left(\int \pi_\lambda(g) f(g) \mu(dg) \right)_\lambda, \\ \mathcal{F}^{-1}(a_\lambda)_\lambda &= \left(g \mapsto \sum_{\lambda \in \hat{G}} D_\lambda \operatorname{tr} \Big(a_\lambda \pi_\lambda^{\dagger}(g) \Big) \right). \end{split}$$

We will write π_{λ_0} for the trivial representation with character $tr(\pi_{\lambda_0}(g)) = 1$ for all $g \in G$ and note character orthogonality, namely

$$\int \operatorname{tr}(\pi_{\lambda}(g)) \operatorname{tr}\Big(\pi_{\lambda'}^{\dagger}(g)\Big) \mu(dg) = \delta_{\lambda\lambda'}$$

and so in particular

$$\int \mathrm{tr}(\pi_\lambda(g)) \mu(dg) = \delta_{\lambda \lambda_0}.$$

3. Random walks on groups

So let us now consider some measure ν on G and let (A_n) be i.i.d. copies of ν , and let $X_0 = e$ and $X_n = A_n \cdots A_1$ for $n \ge 1$ where e denotes the identity element of G. Consider $f \in L^2(G, \mu)$ which we write using the Peter-Weyl theorem as

$$f(g) = \sum_{\lambda \in \hat{G}} D_{\lambda} \operatorname{tr} \Bigl(\left(\mathcal{F}f \right)_{\lambda} \pi^{\dagger}_{\lambda}(g) \Bigr).$$

Ignoring any issues about interchanging limits in the following two paragraphs, we therefore obtain that we have

$$\begin{split} \mathbb{E}(f(X_n)) &= \sum_{\lambda \in \hat{G}} D_\lambda \operatorname{tr} \left(\left(\mathcal{F}f \right)_\lambda \mathbb{E} \left(\pi_\lambda^{\dagger}(A_n \cdots A_1) \right) \right) \\ &= \sum_{\lambda \in \hat{G}} D_\lambda \operatorname{tr} \left(\left(\mathcal{F}f \right)_\lambda \mathbb{E} \left(\pi_\lambda^{\dagger}(A_1) \right)^n \right). \end{split}$$

It follows that if $\|\mathbb{E}(\pi_\lambda(A_1))\|_{\text{op}} < 1$ for all $\lambda \neq \lambda_0$ then

$$\mathbb{E}(f(X_n)) \to \mathrm{tr}\Big(\left(\mathcal{F}f \right)_{\lambda_0} \Big) = \int f(g) \mu(dg) \quad \mathrm{as} \quad n \to \infty.$$

Making the above formal yields the following proposition.

Proposition 3.1. The following two assertions are equivalent: (i) We have $\|\int \pi_{\lambda}(g)\nu(dg)\|_{\text{op}} < 1$ for all $\lambda \neq \lambda_0$, and (ii) the law of X_n converges weakly to μ as $n \to \infty$.

Proof. Consider the set

$$\mathcal{S} = \Bigg\{ \Bigg(g \mapsto \sum_{\lambda \in F} D_{\lambda} \operatorname{tr} \Bigl(a_{\lambda} \pi_{\lambda}^{\dagger}(g) \Bigr) \Bigg) : a_{\lambda} \in \operatorname{End}(V_{\lambda}) \, \forall \lambda \in F \text{ with } F \subseteq \hat{G} \text{ finite} \Bigg\}.$$

Using the Peter-Weyl theorem it is not difficult to check that \mathcal{S} satisfies the conditions of the Stone-Weierstrass theorem and is therefore dense in $(C(G), \|\cdot\|_{\infty})$.

Let us first show that (i) implies (ii): By standard probabilistic results and the compactness of G, it is enough to show that any subsequential limit of the laws of the X_n random variables equals μ ; let us therefore write μ' for such a subsequential limit. For elements $f \in S$ the discussion just before the proposition is rigorous and it follows that

$$\int f(g)\mu'(dg) = \int f(g)\mu(dg) \quad \forall f \in \mathcal{S}.$$

The fact that S is dense in $(C(G), \|\cdot\|_{\infty})$ implies that this extends to all $f \in C(G)$ and hence $\mu' = \mu$ by standard measure theory results as required.

To see that (ii) implies (i), suppose that $\|\int \pi_{\lambda}(g)\nu(dg)\|_{\text{op}} = 1$ for some $\lambda \neq \lambda_0$ and set $f(g) = \operatorname{tr}\left(\pi_{\lambda}^{\dagger}(g)\right)$ so that f is a continuous function on G. Then

$$\mathbb{E}(f(X_n)) = \operatorname{tr}\left(\left(\int \pi_{\lambda}^{\dagger}(g)\nu(dg)\right)^n\right) \not\rightarrow 0 = \int \operatorname{tr}\left(\pi_{\lambda}^{\dagger}(g)\mu(dg)\right) = \int f(g)\mu(dg)$$

as $n \to \infty$ which completes the proof.

Recall that ν^{*k} denotes the k-fold convolution of the measure ν with respect to the group structure on G, so ν^{*k} is the law of X_k .

Corollary 3.2. If supp $(\nu^{*k}) = G$ for some $k \ge 1$ then the law of X_n converges weakly to μ as $n \to \infty$.

Proof. We have $\|\int \pi_{\lambda}(g)\nu^{*k}(dg)\|_{\text{op}} = \|\int \pi_{\lambda}(g)\nu(dg)\|_{\text{op}}^{k}$ so it is enough to show that the left hand side of this equality is < 1 for $\lambda \neq \lambda_{0}$. If it was = 1, since by assumption $\operatorname{supp}(\nu^{*k}) = 1$, this would imply by continuity of π_{λ} that there is a $v \in V_{\lambda} \setminus \{0\}$ such that $\pi_{\lambda}(g)v = v$ for all $g \in G$ (note that the eigenvalue has to be 1 due to the g = e case). Thus $\langle v \rangle$ is an invariant subspace of V_{λ} and by irreducibility $D_{\lambda} = 1$. Since π_{λ} is then the identity, in fact $\lambda = \lambda_{0}$.

It is not hard to check that if $supp(\nu)$ has non-empty interior and G is connected, then the condition in the result is satisfied. To see this, one might want to use that the exponential map is surjective whenever G is connected.

References

 P.-L. Méliot, "The Cut-off Phenomenon for Brownian Motions on Compact Symmetric Spaces", *Potential Anal.*, vol. 40, no. 4, pp. 427–509, 2013, doi: 10.1007/s11118-013-9356-7. Available: https:// arxiv.org/abs/1210.0480